class InputBatch:
    def __init__(
        self,
        max_num_reqs: int,
        max_model_len: int,
        max_num_batched_tokens: int,
        device: torch.device,
        pin_memory: bool,
        vocab_size: int,
        block_sizes: list[int],  # The block_size of each kv cache group
        kernel_block_sizes: list[int],
    ):
        self.max_num_reqs = max_num_reqs
        self.max_model_len = max_model_len
        self.max_num_batched_tokens = max_num_batched_tokens
        self.device = device
        self.pin_memory = pin_memory
        self.vocab_size = vocab_size
        self._req_ids: list[str | None] = []
        self.req_id_to_index: dict[str, int] = {}
        # TODO(woosuk): This buffer could be too large if max_model_len is big.
        # Find a way to reduce the CPU memory usage.
        # This buffer is not directly transferred to the GPU, so it does not
        # need to be pinned.
        self.token_ids_cpu_tensor = torch.zeros(
            (max_num_reqs, max_model_len),
            device="cpu",
            dtype=torch.int32,
            pin_memory=False,
        )
        self.token_ids_cpu = self.token_ids_cpu_tensor.numpy()
        self.num_tokens = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_tokens_no_spec = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_prompt_tokens = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_computed_tokens_cpu_tensor = torch.zeros(
            (max_num_reqs,),
            device="cpu",
            dtype=torch.int32,
            pin_memory=pin_memory,
        )
        self.num_computed_tokens_cpu = self.num_computed_tokens_cpu_tensor.numpy()
        # Block table.
        self.block_table = MultiGroupBlockTable(
            max_num_reqs=max_num_reqs,
            max_model_len=max_model_len,
            max_num_batched_tokens=max_num_batched_tokens,
            pin_memory=pin_memory,
            device=device,
            block_sizes=block_sizes,
            kernel_block_sizes=kernel_block_sizes,
        )
        # Sampling-related.
        self.temperature = torch.empty(
            (max_num_reqs,), dtype=torch.float32, device=device
        )
        self.temperature_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float32, device="cpu", pin_memory=pin_memory
        )
        self.temperature_cpu = self.temperature_cpu_tensor.numpy()
        self.greedy_reqs: set[str] = set()
        self.random_reqs: set[str] = set()
        self.top_p = torch.empty((max_num_reqs,), dtype=torch.float32, device=device)
        self.top_p_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float32, device="cpu", pin_memory=pin_memory
        )
        self.top_p_cpu = self.top_p_cpu_tensor.numpy()
        self.top_p_reqs: set[str] = set()
        self.top_k = torch.empty((max_num_reqs,), dtype=torch.int32, device=device)
        self.top_k_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.int32, device="cpu", pin_memory=pin_memory
        )
        self.top_k_cpu = self.top_k_cpu_tensor.numpy()
        self.top_k_reqs: set[str] = set()
        self.min_p = torch.empty((max_num_reqs,), dtype=torch.float32, device=device)
        self.min_p_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float32, device="cpu", pin_memory=pin_memory
        )
        self.min_p_cpu = self.min_p_cpu_tensor.numpy()
        self.min_p_reqs: set[str] = set()
        # Frequency penalty related data structures
        self.frequency_penalties = torch.empty(
            (max_num_reqs,), dtype=torch.float, device=device
        )
        self.frequency_penalties_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float, device="cpu", pin_memory=pin_memory
        )
        self.frequency_penalties_cpu = self.frequency_penalties_cpu_tensor.numpy()
        self.frequency_penalties_reqs: set[str] = set()
        # Presence penalty related data structures
        self.presence_penalties = torch.empty(
            (max_num_reqs,), dtype=torch.float, device=device
        )
        self.presence_penalties_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float, device="cpu", pin_memory=pin_memory
        )
        self.presence_penalties_cpu = self.presence_penalties_cpu_tensor.numpy()
        self.presence_penalties_reqs: set[str] = set()
        # Repetition penalty related data structures
        self.repetition_penalties = torch.empty(
            (max_num_reqs,), dtype=torch.float, device=device
        )
        self.repetition_penalties_cpu_tensor = torch.empty(
            (max_num_reqs,), dtype=torch.float, device="cpu", pin_memory=pin_memory
        )
        self.repetition_penalties_cpu = self.repetition_penalties_cpu_tensor.numpy()
        self.repetition_penalties_reqs: set[str] = set()
        # req_index -> (min_tokens, stop_token_ids)
        self.min_tokens: dict[int, tuple[int, set[int]]] = {}
        # lora related
        self.request_lora_mapping = np.zeros((self.max_num_reqs,), dtype=np.int32)
        self.lora_id_to_request_ids: dict[int, set[str]] = {}
        self.lora_id_to_lora_request: dict[int, LoRARequest] = {}
        # req_index -> generator
        # NOTE(woosuk): The indices of the requests that do not have their own
        # generator should not be included in the dictionary.
        self.generators: dict[int, torch.Generator] = {}
        self.num_logprobs: dict[str, int] = {}
        # NOTE(rob): num_prompt_logprobs only includes reqs
        # that are currently in the prefill phase.
        self.num_prompt_logprobs: dict[str, int] = {}
        # To accumulate prompt logprobs tensor chunks across prefill steps.
        self.in_progress_prompt_logprobs_cpu: dict[str, LogprobsTensors] = {}
        self.logit_bias: list[dict[int, float] | None] = [None] * max_num_reqs
        self.has_allowed_token_ids: set[str] = set()
        # NOTE(lufang): In the mask tensor, if the corresponding token allowed,
        # the value is False. Since we use masked_fill_ to set -inf.
        self.allowed_token_ids_mask: torch.Tensor | None = None
        self.allowed_token_ids_mask_cpu_tensor: torch.Tensor | None = None
        # req_index -> bad_words_token_ids
        self.bad_words_token_ids: dict[int, list[list[int]]] = {}
        self.req_output_token_ids: list[list[int] | None] = []
    @property
    def req_ids(self) -> list[str]:
        # None elements should only be present transiently
        # while performing state updates to the batch.
        return cast(list[str], self._req_ids)
    def add_request(
        self,
        request: "CachedRequestState",
        req_index: int | None = None,
    ) -> None:
        if req_index is None:
            req_index = self.num_reqs
        assert req_index < self.max_num_reqs
        req_id = request.req_id
        if req_index == len(self._req_ids):
            self._req_ids.append(req_id)
            self.req_output_token_ids.append(request.output_token_ids)
        else:
            self._req_ids[req_index] = req_id
            self.req_output_token_ids[req_index] = request.output_token_ids
        self.req_id_to_index[req_id] = req_index
        # Copy the prompt token ids and output token ids.
        num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
            request.prompt_token_ids, request.prompt_embeds
        )
        # TODO: copy prompt_embeds
        self.num_prompt_tokens[req_index] = num_prompt_tokens
        self.token_ids_cpu[req_index, :num_prompt_tokens] = request.prompt_token_ids
        start_idx = num_prompt_tokens
        end_idx = start_idx + len(request.output_token_ids)
        self.token_ids_cpu[req_index, start_idx:end_idx] = request.output_token_ids
        # Number of token ids in token_ids_cpu.
        # NOTE(woosuk): This may include spec decode tokens.
        self.num_tokens[req_index] = request.num_tokens
        # Number of tokens without spec decode tokens.
        self.num_tokens_no_spec[req_index] = request.num_tokens
        self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens
        self.block_table.add_row(request.block_ids, req_index)
        sampling_params = request.sampling_params
        assert sampling_params is not None, "pooling requests not supported yet"
        if sampling_params.sampling_type == SamplingType.GREEDY:
            # Should avoid division by zero later when apply_temperature.
            self.temperature_cpu[req_index] = 0.0
            self.greedy_reqs.add(req_id)
        else:
            self.temperature_cpu[req_index] = sampling_params.temperature
            self.random_reqs.add(req_id)
        self.top_p_cpu[req_index] = sampling_params.top_p
        if sampling_params.top_p < 1:
            self.top_p_reqs.add(req_id)
        top_k = sampling_params.top_k
        if 0 < top_k < self.vocab_size:
            self.top_k_reqs.add(req_id)
        else:
            top_k = self.vocab_size
        self.top_k_cpu[req_index] = top_k
        self.min_p_cpu[req_index] = sampling_params.min_p
        self.frequency_penalties_cpu[req_index] = sampling_params.frequency_penalty
        if sampling_params.min_p > _SAMPLING_EPS:
            self.min_p_reqs.add(req_id)
        if sampling_params.frequency_penalty != 0.0:
            self.frequency_penalties_reqs.add(req_id)
        self.presence_penalties_cpu[req_index] = sampling_params.presence_penalty
        if sampling_params.presence_penalty != 0.0:
            self.presence_penalties_reqs.add(req_id)
        self.repetition_penalties_cpu[req_index] = sampling_params.repetition_penalty
        if sampling_params.repetition_penalty != 1.0:
            self.repetition_penalties_reqs.add(req_id)
        if sampling_params.min_tokens:
            self.min_tokens[req_index] = (
                sampling_params.min_tokens,
                sampling_params.all_stop_token_ids,
            )
        # NOTE(woosuk): self.generators should not include the requests that
        # do not have their own generator.
        if request.generator is not None:
            self.generators[req_index] = request.generator
        if sampling_params.logprobs is not None:
            self.num_logprobs[req_id] = sampling_params.logprobs
        if sampling_params.prompt_logprobs is not None:
            self.num_prompt_logprobs[req_id] = sampling_params.prompt_logprobs
        if sampling_params.logit_bias is not None:
            self.logit_bias[req_index] = sampling_params.logit_bias
        if sampling_params.allowed_token_ids:
            self.has_allowed_token_ids.add(req_id)
            if self.allowed_token_ids_mask_cpu_tensor is None:
                # Lazy allocation for this tensor, which can be large.
                # False means we don't fill with -inf.
                self.allowed_token_ids_mask = torch.zeros(
                    self.max_num_reqs,
                    self.vocab_size,
                    dtype=torch.bool,
                    device=self.device,
                )
                self.allowed_token_ids_mask_cpu_tensor = torch.zeros(
                    self.max_num_reqs, self.vocab_size, dtype=torch.bool, device="cpu"
                )
            self.allowed_token_ids_mask_cpu_tensor[req_index] = True
            # False means we don't fill with -inf.
            self.allowed_token_ids_mask_cpu_tensor[req_index][
                sampling_params.allowed_token_ids
            ] = False
        if sampling_params.bad_words_token_ids:
            self.bad_words_token_ids[req_index] = sampling_params.bad_words_token_ids
        # Add request lora ID
        if request.lora_request:
            lora_id = request.lora_request.lora_int_id
            if lora_id not in self.lora_id_to_request_ids:
                self.lora_id_to_request_ids[lora_id] = set()
            self.request_lora_mapping[req_index] = lora_id
            self.lora_id_to_request_ids[lora_id].add(request.req_id)
            self.lora_id_to_lora_request[lora_id] = request.lora_request
        else:
            # No LoRA
            self.request_lora_mapping[req_index] = 0
    def remove_request(self, req_id: str) -> int | None:
        """This method must always be followed by a call to condense()."""
        req_index = self.req_id_to_index.pop(req_id, None)
        if req_index is None:
            return None
        self._req_ids[req_index] = None
        self.req_output_token_ids[req_index] = None
        self.greedy_reqs.discard(req_id)
        self.random_reqs.discard(req_id)
        self.top_p_reqs.discard(req_id)
        self.top_k_reqs.discard(req_id)
        self.min_p_reqs.discard(req_id)
        self.min_tokens.pop(req_index, None)
        self.frequency_penalties_reqs.discard(req_id)
        self.presence_penalties_reqs.discard(req_id)
        self.repetition_penalties_reqs.discard(req_id)
        self.generators.pop(req_index, None)
        self.num_logprobs.pop(req_id, None)
        self.num_prompt_logprobs.pop(req_id, None)
        self.in_progress_prompt_logprobs_cpu.pop(req_id, None)
        # LoRA
        lora_id = self.request_lora_mapping[req_index]
        if lora_id != 0:
            self.lora_id_to_request_ids[lora_id].discard(req_id)
            if len(self.lora_id_to_request_ids[lora_id]) == 0:
                self.lora_id_to_request_ids.pop(lora_id)
                self.lora_id_to_lora_request.pop(lora_id)
            self.request_lora_mapping[req_index] = 0
        self.logit_bias[req_index] = None
        self.has_allowed_token_ids.discard(req_id)
        if self.allowed_token_ids_mask_cpu_tensor is not None:
            # False means we don't fill with -inf.
            self.allowed_token_ids_mask_cpu_tensor[req_index].fill_(False)
        self.bad_words_token_ids.pop(req_index, None)
        return req_index
    def swap_states(self, i1: int, i2: int) -> None:
        old_id_i1 = self._req_ids[i1]
        old_id_i2 = self._req_ids[i2]
        self._req_ids[i1], self._req_ids[i2] = self._req_ids[i2], self._req_ids[i1]  # noqa
        self.req_output_token_ids[i1], self.req_output_token_ids[i2] = (
            self.req_output_token_ids[i2],
            self.req_output_token_ids[i1],
        )
        assert old_id_i1 is not None and old_id_i2 is not None
        self.req_id_to_index[old_id_i1], self.req_id_to_index[old_id_i2] = (
            self.req_id_to_index[old_id_i2],
            self.req_id_to_index[old_id_i1],
        )
        self.num_tokens[i1], self.num_tokens[i2] = (
            self.num_tokens[i2],
            self.num_tokens[i1],
        )
        self.num_tokens_no_spec[i1], self.num_tokens_no_spec[i2] = (
            self.num_tokens_no_spec[i2],
            self.num_tokens_no_spec[i1],
        )
        self.num_prompt_tokens[i1], self.num_prompt_tokens[i2] = (
            self.num_prompt_tokens[i2],
            self.num_prompt_tokens[i1],
        )
        self.num_computed_tokens_cpu[i1], self.num_computed_tokens_cpu[i2] = (
            self.num_computed_tokens_cpu[i2],
            self.num_computed_tokens_cpu[i1],
        )
        self.temperature_cpu[i1], self.temperature_cpu[i2] = (
            self.temperature_cpu[i2],
            self.temperature_cpu[i1],
        )
        self.top_p_cpu[i1], self.top_p_cpu[i2] = self.top_p_cpu[i2], self.top_p_cpu[i1]
        self.top_k_cpu[i1], self.top_k_cpu[i2] = self.top_k_cpu[i2], self.top_k_cpu[i1]
        self.frequency_penalties_cpu[i1], self.frequency_penalties_cpu[i2] = (
            self.frequency_penalties_cpu[i2],
            self.frequency_penalties_cpu[i1],
        )
        self.presence_penalties_cpu[i1], self.presence_penalties_cpu[i2] = (
            self.presence_penalties_cpu[i2],
            self.presence_penalties_cpu[i1],
        )
        self.repetition_penalties_cpu[i1], self.repetition_penalties_cpu[i2] = (
            self.repetition_penalties_cpu[i2],
            self.repetition_penalties_cpu[i1],
        )
        self.min_p_cpu[i1], self.min_p_cpu[i2] = self.min_p_cpu[i2], self.min_p_cpu[i1]
        # NOTE: the following is unsafe
        # self.token_ids_cpu[i1, ...], self.token_ids_cpu[i2, ...], =\
        #     self.token_ids_cpu[i2, ...], self.token_ids_cpu[i1, ...]
        # instead, we need to temporarily copy the data for one of the indices
        # TODO(lucas): optimize this by only copying valid indices
        tmp = self.token_ids_cpu[i1, ...].copy()
        self.token_ids_cpu[i1, ...] = self.token_ids_cpu[i2, ...]
        self.token_ids_cpu[i2, ...] = tmp
        swap_dict_values(self.generators, i1, i2)
        swap_dict_values(self.min_tokens, i1, i2)
        swap_dict_values(self.bad_words_token_ids, i1, i2)
        self.request_lora_mapping[i1], self.request_lora_mapping[i2] = (
            self.request_lora_mapping[i2],
            self.request_lora_mapping[i1],
        )
        self.logit_bias[i1], self.logit_bias[i2] = (
            self.logit_bias[i2],
            self.logit_bias[i1],
        )
        if self.allowed_token_ids_mask_cpu_tensor is not None:
            (
                self.allowed_token_ids_mask_cpu_tensor[i1],
                self.allowed_token_ids_mask_cpu_tensor[i2],
            ) = (
                self.allowed_token_ids_mask_cpu_tensor[i2],
                self.allowed_token_ids_mask_cpu_tensor[i1],
            )
        self.block_table.swap_row(i1, i2)
    def condense(self, empty_req_indices: list[int]) -> None:
        """Move non-empty requests down into lower, empty indices.
        Args:
          empty_req_indices: empty batch indices, sorted descending.
        """
        num_reqs = self.num_reqs
        if num_reqs == 0:
            # The batched states are empty.
            self._req_ids.clear()
            self.req_output_token_ids.clear()
            return
        # NOTE(woosuk): This function assumes that the empty_req_indices
        # is sorted in descending order.
        last_req_index = num_reqs + len(empty_req_indices) - 1
        while empty_req_indices:
            # Find the largest non-empty index.
            while last_req_index in empty_req_indices:
                last_req_index -= 1
            # Find the smallest empty index.
            empty_index = empty_req_indices.pop()
            if empty_index >= last_req_index:
                break
            # Swap the states.
            req_id = self._req_ids[last_req_index]
            output_token_ids = self.req_output_token_ids[last_req_index]
            assert req_id is not None
            self._req_ids[empty_index] = req_id
            self._req_ids[last_req_index] = None
            self.req_output_token_ids[empty_index] = output_token_ids
            self.req_output_token_ids[last_req_index] = None
            self.req_id_to_index[req_id] = empty_index
            num_tokens = self.num_tokens[last_req_index]
            self.token_ids_cpu[empty_index, :num_tokens] = self.token_ids_cpu[
                last_req_index, :num_tokens
            ]
            self.num_tokens[empty_index] = num_tokens
            self.num_tokens_no_spec[empty_index] = self.num_tokens_no_spec[
                last_req_index
            ]
            self.num_prompt_tokens[empty_index] = self.num_prompt_tokens[last_req_index]
            self.num_computed_tokens_cpu[empty_index] = self.num_computed_tokens_cpu[
                last_req_index
            ]
            self.block_table.move_row(last_req_index, empty_index)
            self.temperature_cpu[empty_index] = self.temperature_cpu[last_req_index]
            self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index]
            self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index]
            self.frequency_penalties_cpu[empty_index] = self.frequency_penalties_cpu[
                last_req_index
            ]
            self.presence_penalties_cpu[empty_index] = self.presence_penalties_cpu[
                last_req_index
            ]
            self.repetition_penalties_cpu[empty_index] = self.repetition_penalties_cpu[
                last_req_index
            ]
            self.min_p_cpu[empty_index] = self.min_p_cpu[last_req_index]
            generator = self.generators.pop(last_req_index, None)
            if generator is not None:
                self.generators[empty_index] = generator
            min_token = self.min_tokens.pop(last_req_index, None)
            if min_token is not None:
                self.min_tokens[empty_index] = min_token
            self.request_lora_mapping[empty_index] = self.request_lora_mapping[
                last_req_index
            ]
            self.logit_bias[empty_index] = self.logit_bias[last_req_index]
            if self.allowed_token_ids_mask_cpu_tensor is not None:
                self.allowed_token_ids_mask_cpu_tensor[empty_index] = (
                    self.allowed_token_ids_mask_cpu_tensor[last_req_index]
                )
            bad_words_token_ids = self.bad_words_token_ids.pop(last_req_index, None)
            if bad_words_token_ids is not None:
                self.bad_words_token_ids[empty_index] = bad_words_token_ids
            # Decrement last_req_index since it is now empty.
            last_req_index -= 1
        # Trim lists to the batch size.
        del self._req_ids[self.num_reqs :]
        del self.req_output_token_ids[self.num_reqs :]
    def _make_prompt_token_ids_tensor(self) -> torch.Tensor:
        max_prompt_len = self.num_prompt_tokens[: self.num_reqs].max()
        prompt_token_ids_cpu_tensor = torch.empty(
            (self.num_reqs, max_prompt_len),
            device="cpu",
            dtype=torch.int64,
            pin_memory=self.pin_memory,
        )
        prompt_token_ids = prompt_token_ids_cpu_tensor.numpy()
        prompt_token_ids[:] = self.token_ids_cpu[: self.num_reqs, :max_prompt_len]
        # Use the value of vocab_size as a pad since we don't have a
        # token_id of this value.
        for i in range(self.num_reqs):
            prompt_token_ids[i, self.num_prompt_tokens[i] :] = self.vocab_size
        return prompt_token_ids_cpu_tensor.to(device=self.device, non_blocking=True)
    def make_lora_inputs(
        self, num_scheduled_tokens: np.ndarray
    ) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
        """
        Given the num_scheduled_tokens for each request in the batch, return
        datastructures used to activate the current LoRAs.
        Returns:
            1. prompt_lora_mapping: A tuple of size self.num_reqs where,
               prompt_lora_mapping[i] is the LoRA id to use for the ith prompt.
            2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens)
               where, token_lora_mapping[i] is the LoRA id to use for ith token.
            3. lora_requests: Set of relevant LoRA requests.
        """
        req_lora_mapping = self.request_lora_mapping[: self.num_reqs]
        prompt_lora_mapping = tuple(req_lora_mapping)
        token_lora_mapping = tuple(req_lora_mapping.repeat(num_scheduled_tokens))
        active_lora_requests: set[LoRARequest] = set(
            self.lora_id_to_lora_request.values()
        )
        return prompt_lora_mapping, token_lora_mapping, active_lora_requests
    @property
    def num_reqs(self) -> int:
        return len(self.req_id_to_index)
    @property
    def all_greedy(self) -> bool:
        return len(self.random_reqs) == 0
    @property
    def all_random(self) -> bool:
        return len(self.greedy_reqs) == 0
    @property
    def no_top_p(self) -> bool:
        return len(self.top_p_reqs) == 0
    @property
    def no_top_k(self) -> bool:
        return len(self.top_k_reqs) == 0
    @property
    def no_min_p(self) -> bool:
        return len(self.min_p_reqs) == 0
    @property
    def no_penalties(self) -> bool:
        return (
            len(self.presence_penalties_reqs) == 0
            and len(self.frequency_penalties_reqs) == 0
            and len(self.repetition_penalties_reqs) == 0
        )
    @property
    def max_num_logprobs(self) -> int | None:
        return max(self.num_logprobs.values()) if self.num_logprobs else None
    @property
    def no_prompt_logprob(self) -> bool:
        return not self.num_prompt_logprobs
    @property
    def no_allowed_token_ids(self) -> bool:
        return len(self.has_allowed_token_ids) == 0