def prepare_moe_fp8_layer_for_marlin(
    layer: torch.nn.Module, size_k_first: bool = True
) -> None:
    logger.warning_once(
        "Your GPU does not have native support for FP8 computation but "
        "FP8 quantization is being used. Weight-only FP8 compression will "
        "be used leveraging the Marlin kernel. This may degrade "
        "performance for compute-heavy workloads."
    )
    e = layer.num_experts
    k = layer.hidden_size
    n = layer.intermediate_size_per_partition
    weight_block_size = getattr(layer, "weight_block_size", None)
    # WORKSPACE
    device = layer.w13_weight.device
    layer.workspace = marlin_make_workspace_new(device, 4)
    perm = torch.empty(0, dtype=torch.int, device=device)
    # WEIGHT
    # Repack weights to marlin format
    for name in ["w13_weight", "w2_weight"]:
        weight = getattr(layer, name)
        tensor_list = []
        if "w13" in name:
            size_n, size_k = n * 2, k
        else:
            size_n, size_k = k, n
        if size_k_first:
            assert weight.shape == (e, size_k, size_n)
        else:
            assert weight.shape == (e, size_n, size_k)
        for i in range(e):
            qweight = pack_fp8_to_int32(weight[i], size_k_first)
            if not size_k_first:
                qweight = qweight.T.contiguous()
            marlin_qweight = ops.gptq_marlin_repack(
                b_q_weight=qweight, perm=perm, size_k=size_k, size_n=size_n, num_bits=8
            )
            tensor_list.append(marlin_qweight)
        weight = torch.cat([x.unsqueeze(0) for x in tensor_list], 0)
        weight = torch.nn.Parameter(weight, requires_grad=False)
        setattr(layer, name, weight)
    # WEIGHT SCALES
    # Permute scales
    group_size = -1 if weight_block_size is None else weight_block_size[1]
    for name in ["w13", "w2"]:
        if name + "_weight_scale" in dir(layer):
            new_name = name + "_weight_scale"
            scales = getattr(layer, new_name).to(layer.orig_dtype)
            delattr(layer, new_name)
        elif name + "_weight_scale_inv" in dir(layer):
            new_name = name + "_weight_scale_inv"
            scales = getattr(layer, new_name).to(layer.orig_dtype)
            delattr(layer, new_name)
        tensor_list = []
        if "w13" in name:
            size_n, size_k = n * 2, k
        else:
            size_n, size_k = k, n
        # marlin kernel only support channel-wise and group-wise quantization
        # we need to convert the scales
        if weight_block_size is None:
            if scales.nelement() == e:
                # tensor-wise quantization -> channel-wise quantization
                # (e, 1, 1) =>(repeat)=> (e, 1, size_n)
                scales = scales.view(e, 1, 1).repeat_interleave(size_n, 2)
            elif scales.nelement() > e and scales.nelement() != e * size_n:
                assert (e * size_n) % scales.nelement() == 0
                s_size = scales.nelement() // e
                # tensor-wise quantization (for gate-up proj)
                #     -> channel-wise quantization
                # (e, 1, s_size) =>(repeat)=> (e, 1, size_n)
                scales = scales.view(e, 1, s_size)
                scales = scales.repeat_interleave(size_n // s_size, 2)
            else:
                # channel-wise quantization
                # (e, 1, size_n)
                scales = scales.view(e, 1, size_n)
        else:
            # block-wise quantization -> group-wise quantization
            # (e, size_k // block_size[1], ceil(size_n / block_size[0]))
            #  =>(repeat)=> (e, size_k // block_size[1], size_n)
            if not size_k_first:
                scales = scales.permute(0, 2, 1)
            block_n = weight_block_size[0]
            scales = scales.repeat_interleave(block_n, 2)
            # size_n may not divisible by block_size[0]
            scales = scales[..., :size_n].contiguous()
        for i in range(e):
            marlin_scales = marlin_permute_scales(
                s=scales[i], size_k=size_k, size_n=size_n, group_size=group_size
            )
            tensor_list.append(marlin_scales)
        scales = torch.cat([x.unsqueeze(0) for x in tensor_list], 0)
        scales = fp8_fused_exponent_bias_into_scales(scales)
        scales = torch.nn.Parameter(scales, requires_grad=False)
        setattr(layer, name + "_weight_scale", scales)
    # BIAS
    # Permute bias
    for name in ["w13_bias", "w2_bias"]:
        if not hasattr(layer, name):
            continue
        bias = getattr(layer, name).to(layer.orig_dtype)
        tensor_list = []
        for i in range(e):
            expert_bias = bias[i]
            tensor_list.append(marlin_permute_bias(expert_bias))
        bias = torch.cat([x.unsqueeze(0) for x in tensor_list], 0)
        bias = torch.nn.Parameter(bias, requires_grad=False)
        setattr(layer, name, bias)