class ExllamaLinearKernel(MPLinearKernel):
    SUPPORTED_QUANT_TYPES = [scalar_types.uint4b8, scalar_types.uint8b128]
    # In theory supports `scalar_types.uint2b2, scalar_types.uint3b4` too but
    # currently untested so not added to the list
    @classmethod
    def get_min_capability(cls) -> int:
        return 60
    @classmethod
    def can_implement(cls, c: MPLinearLayerConfig) -> tuple[bool, str | None]:
        if c.has_g_idx and c.partition_weight_shape[0] != c.full_weight_shape[0]:
            return (
                False,
                "Act reordering currently not supported by Exllama, "
                "when the input features are partitioned across "
                "devices",
            )
        if c.partition_weight_shape[1] % (32 // c.weight_type.size_bits) != 0:
            return (
                False,
                "Output features must be a multiple of the pack "
                "factor (32 / num_bits) so that we can correctly "
                "pack the zero points",
            )
        if c.act_type != torch.float16:
            return False, "Exllama only supports float16 activations"
        if c.weight_type not in cls.SUPPORTED_QUANT_TYPES:
            return (
                False,
                f"Quant type ({c.weight_type}) not supported by "
                "Exllama, supported types are: "
                f"{cls.SUPPORTED_QUANT_TYPES}",
            )
        if c.full_weight_shape[0] % c.group_size != 0:
            return (
                False,
                f"Group size ({c.group_size}) does not evenly divide"
                " the number of input features "
                f"({c.full_weight_shape[0]})",
            )
        return True, None
    def process_weights_after_loading(self, layer: torch.nn.Module):
        c = self.config
        # For Exllama, we need to set a zero-point tensor if there is not one
        if not c.zero_points:
            self.w_zp_name = "qzeros"
            device = getattr(layer, self.w_q_name).device
            groups = c.partition_weight_shape[0] // c.group_size
            out_features = c.partition_weight_shape[1]
            if c.weight_type.has_bias():
                # if the type has a bias we have to create a zeros tensor that
                # contains the bias values repeated for each group (-1 due to
                # a bug in the original GPTQ checkpoint format leading to
                # exllama kernel adding 1 to the zero points during inference)
                # Documentation of the bug can be found here:
                #  https://garden.danieldk.eu/GPTQ-Checkpoint-Format
                zeros = torch.full(
                    (groups, out_features),
                    c.weight_type.bias - 1,
                    dtype=torch.int32,
                    device=device,
                )
            else:
                raise NotImplementedError(
                    "A 0 zero-point is not supported by Exllama due to "
                    "a bug in the original GPTQ checkpoint format leading to "
                    "exllama kernel adding 1 to the zero points during "
                    "inference"
                )
            zeros = pack_quantized_values_into_int32(zeros, c.weight_type, packed_dim=1)
            setattr(
                layer, self.w_zp_name, torch.nn.Parameter(zeros, requires_grad=False)
            )
        if c.has_g_idx:
            def transform_w_g_idx(x):
                # Exllama wants the permutation array instead of the group
                # indices
                return torch.argsort(x).to(torch.int)
            self._transform_param(layer, self.w_gidx_name, transform_w_g_idx)
        else:
            self.w_gidx_name = "g_idx"
            empty_g_idx = torch.nn.Parameter(
                torch.empty((0,), dtype=torch.int, device=device), requires_grad=False
            )
            setattr(layer, self.w_gidx_name, empty_g_idx)
        def transform_w_q(x):
            assert isinstance(x, BasevLLMParameter)
            assert self.w_gidx_name is not None
            g_idx = getattr(layer, self.w_gidx_name)
            permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
            x_cont = x.data.contiguous()
            ops.gptq_shuffle(x_cont, g_idx, c.weight_type.size_bits)
            return x_cont
        def transform_w_s(x):
            assert isinstance(x, BasevLLMParameter)
            permute_param_layout_(x, input_dim=0, output_dim=1)
            x.data = x.data.contiguous()
            return x.to(dtype=c.act_type)
        # Repack weights and scales for Machete
        self._transform_param(layer, self.w_q_name, transform_w_q)
        self._transform_param(layer, self.w_s_name, transform_w_s)
    def apply_weights(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: torch.Tensor | None = None,
    ) -> torch.Tensor:
        c = self.config
        x_2d = x.reshape(-1, x.shape[-1])
        out_shape = x.shape[:-1] + (c.partition_weight_shape[1],)
        w_q, w_s, w_zp, w_g_idx = self._get_weight_params(layer)
        assert w_zp is not None, "Zero points are required by Exllama"
        assert w_g_idx is not None, "Group index is required by Exllama"
        output = ops.gptq_gemm(
            x_2d, w_q, w_zp, w_s, w_g_idx, True, c.weight_type.size_bits
        )
        if bias is not None:
            output.add_(bias)
        return output.reshape(out_shape)